Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice.

نویسندگان

  • A Dahan
  • E Sarton
  • L Teppema
  • C Olievier
  • D Nieuwenhuijs
  • H W Matthes
  • B L Kieffer
چکیده

BACKGROUND The involvement of the mu-opioid receptor (muOR) system in the control of breathing, anesthetic potency, and morphine- and anesthesia-induced respiratory depression was investigated in mice lacking the muOR. METHODS Experiments were performed in mice lacking exon 2 of the muOR gene (muOR-/-) and their wild-type littermates (muOR+/+). The influence of saline, morphine, naloxone, and sevoflurane on respiration was measured using a whole body plethysmographic method during air breathing and elevations in inspired carbon dioxide concentration. The influence of morphine and naloxone on anesthetic potency of sevoflurane was determined by tail clamp test. RESULTS Relative to wild-type mice, muOR-deficient mice displayed approximately 15% higher resting breathing frequencies resulting in greater resting ventilation levels. The slope of the ventilation-carbon dioxide response did not differ between genotypes. In muOR+/+ but not muOR-/- mice, a reduction in resting ventilation and slope, relative to placebo, was observed after 100 mg/kg morphine. Naloxone increased resting ventilation and slope in both genotypes. Sevoflurane at 1% inspired concentration induced similar reductions in resting ventilation and slope in the two genotypes. Anesthetic potency was 20% lower in mutant relevant to wild-type mice. Naloxone and morphine caused an increase and decrease, respectively, in anesthetic potency in muOR+/+ mice only. CONCLUSIONS The data indicate the importance of the endogenous opioid system in the physiology of the control of breathing with only a minor role for the muOR. The muOR gene is the molecular site of action of the respiratory effects of morphine. Anesthetic potency is modulated by the endogenous mu-opioid system but not by the kappa- and delta-opioid systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia.

Morphine produces analgesia at opiate receptors expressed in nociceptive circuits. mu, delta, and kappa opiate receptor subtypes are expressed in circuits that can modulate nociception and receive inputs from endogenous opioid neuropeptide ligands. The roles played by each receptor subtype in nociceptive processing in drug-free and morphine-treated states have not been clear, however. We produc...

متن کامل

Nerve injury induces a tonic bilateral mu-opioid receptor-mediated inhibitory effect on mechanical allodynia in mice.

BACKGROUND Mice lacking the mu-opioid receptor gene have been used to characterize the role of mu-opioid receptors in nociception and the analgesic actions of opioid agonists. In this study, the authors determined the role of mu-opioid receptors in neuropathic pain behaviors and the effectiveness of mu- and kappa-opioid receptor agonists on this behavior in mice. METHODS The authors studied t...

متن کامل

Mu-opioid receptor up-regulation and functional supersensitivity are independent of antagonist efficacy.

Chronic opioid antagonist treatment up-regulates opioid receptors and produces functional supersensitivity. Although opioid antagonists vary from neutral to inverse, the role of antagonist efficacy in mediating the chronic effects of opioid antagonists is not known. In this study, the effects of two putative inverse agonists (naltrexone, naloxone) and a putative neutral antagonist (6beta-naltre...

متن کامل

Deletion of the mu opioid receptor results in impaired acquisition of Pavlovian context fear.

The mu opioid receptor may constitute a critical component of a negative feedback system that regulates Pavlovian fear conditioning. We investigated context fear conditioning acquisition and expression in mu opioid receptor knockout mice (on an inbred, C57 genetic background). We discovered that the mu receptor knockout results in an unexpected and significant deficit in context fear acquisitio...

متن کامل

Effect of N-methyl-D-aspartate receptor epsilon1 subunit gene disruption of the action of general anesthetic drugs in mice.

BACKGROUND Recent molecular strategies demonstrated that the N-methyl-d-aspartate (NMDA) receptor is a major target site of anesthetic agents. In a previous article, the authors showed that knocking out the NMDA receptor epsilon1 subunit gene markedly reduced the hypnotic effect of ketamine in mice. In the current study, the authors examined the in vivo contribution of the NMDA receptor epsilon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 94 5  شماره 

صفحات  -

تاریخ انتشار 2001